Extended Isomap for Classification
نویسنده
چکیده
The Isomap method has demonstrated promising results in finding a low dimensional embedding from samples in the high dimensional input space. The crux of this method is to estimate geodesic distance with multidimensional scaling for dimensionality reduction. Since the Isomap method is developed based on the reconstruction principle, it may not be optimal from the classification viewpoint. We present an extended Isomap method that utilizes Fisher Linear Discriminant for pattern classification. Numerous experiments on image data sets show that our extension is more effective than the original Isomap method for pattern classification. Furthermore, the extended Isomap shows promising results compared with best classification methods in the literature.
منابع مشابه
Linear versus nonlinear dimensionality reduction for banks' credit rating prediction
Dimensionality reduction methods have shown their usefulness for both supervised and unsupervised tasks in a wide range of application domains. Several linear and nonlinear approaches have been proposed in order to derive meaningful low-dimensional representations of high-dimensional data. Among nonlinear algorithms manifold learning methods, such as isometric feature mapping (Isomap), have rec...
متن کاملApplying ISOMAP to the Learning of Hyperspectral Image
In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should gre...
متن کاملAn Automatic and Adaptive Multi-manifolds Learning Algorithm
Isomap is a classic and representative manifold learning algorithm for nonlinear dimensionality reduction, which aims to circumvent the problem of “the curse of dimensionality” and attempts to recover the intrinsic structure hidden in high-dimensional data based on the assumption that data lie in or near a single manifold. However, Isomap fails to work when data set consists of multi-clusters o...
متن کاملDistance Learning Algorithm Comparing in Classification and Retrieval
Learning a good distance function is crucial in a lot of applications. Different Learning distance with different will effect the performance of application in different ways. The most closely related application is classification and retrieval task. In this report, three different distance learning algorithm, LMNN, Isomap and SimpleNPKL, is compared via their performance in three different kin...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کامل